Tidying up towing data with Pandas
I came across this post in an archive folder, fully written out as you see below but never published.
I'm not a data analyst or even really proficient in Pandas by any stretch of the imagination so don't take any of the below as best practice.
What I can claim however is that it worked, more or less, so you're welcome to code along.
This will be a pretty lengthy blog post detailing how I took an XLSX spreadsheet with towing data and cleaned it up to be (mostly) machine readable.
My ultimate goal is to transform it into a fancy data visualisation. I know roughly how to get there but getting there is tedious.
Rather than leave code snippets lying around my hard drive, I've decided to share what I've accomplished so far.
That and I'm going to forget how to do any of this if I don't explain it step by step!
Getting the data
This is the first, and sometimes hardest step. My advice is to be as explicit as is reasonable when requesting the data. It's helpful to be particular about what metadata you're after, and it'll help you if you request to receive it in a machine readable format.
In my case, I received an XLSX file. Not as ideal as a CSV or GeoJSON but also better than receiving a PDF!
You can see my original request and even get a copy of the data here
Parsing the data
First, we need to see what we've actually got to work with and then we can parse it into a nicer format.
> ls
Marcus Aug 2016 Jul 2019.xlsx
> mv Marcus\ Aug\ 2016\ Jul\ 2019.xlsx towing.xlsx
> head -n 1 towing.xlsx
P!??@?6??[Content_Types].xml ??(??YMo?@?W???Z?eM?&?C??m??R??+??YR??]/?Q"?)s?w?{??ߌ???F7?xT?̘??,S?J?????1:gi*?X3?d????7[???g??}?????:0???z-C????r%????????0aZ
6?~??\7!???_??*ò??u-ՌI?U???;S=!??B?P?r?#t???ɝW??_10d? ????????$
k??C
?????Q??????WdW҇?R??????_?Z??_?{4?r-????Z?<?}<??6??SǤ?"DP2&"???"䜊??T??B榙9? c?D?D????Cub??kx?}??b?6pr s?}%??:?/?®?7;*vYPq???;P?1<5??tI?3Y???J?G?????Q132B??d??L??b?ST\????.v????@"???????P!^?e??jT??=|P??u?G;?8??O?dv
?_rels/.rels ??(????N?0
??H?C???n ???]&??*`????Q?A??$?F??؟???)??8??|h?*??r)?j6???|)W?R???`ϖ?<Q????j?L=?4???\lP???=?Ѐ!cG6u*????58???<???COq0J?????<??yٛ??մg}??3+??HY9??|l?5?D_STҰ~J??\??%?'?\N???0PD?A??y?O???r?刦??t???w???????c?<,???F?ɷ,>??P!ωkE%??xl/_rels/workbook.xml.rels ??(??XMo?0?#?"߉?3?E????z?"q??&??C?
??Z??
> ls
Marcus Aug 2016 Jul 2019.xlsx
> mv Marcus\ Aug\ 2016\ Jul\ 2019.xlsx towing.xlsx
> head -n 1 towing.xlsx
P!??@?6??[Content_Types].xml ??(??YMo?@?W???Z?eM?&?C??m??R??+??YR??]/?Q"?)s?w?{??ߌ???F7?xT?̘??,S?J?????1:gi*?X3?d????7[???g??}?????:0???z-C????r%????????0aZ
6?~??\7!???_??*ò??u-ՌI?U???;S=!??B?P?r?#t???ɝW??_10d? ????????$
k??C
?????Q??????WdW҇?R??????_?Z??_?{4?r-????Z?<?}<??6??SǤ?"DP2&"???"䜊??T??B榙9? c?D?D????Cub??kx?}??b?6pr s?}%??:?/?®?7;*vYPq???;P?1<5??tI?3Y???J?G?????Q132B??d??L??b?ST\????.v????@"???????P!^?e??jT??=|P??u?G;?8??O?dv
?_rels/.rels ??(????N?0
??H?C???n ???]&??*`????Q?A??$?F??؟???)??8??|h?*??r)?j6???|)W?R???`ϖ?<Q????j?L=?4???\lP???=?Ѐ!cG6u*????58???<???COq0J?????<??yٛ??մg}??3+??HY9??|l?5?D_STҰ~J??\??%?'?\N???0PD?A??y?O???r?刦??t???w???????c?<,???F?ɷ,>??P!ωkE%??xl/_rels/workbook.xml.rels ??(??XMo?0?#?"߉?3?E????z?"q??&??C?
??Z??
Well, that's not going to work! We need to use some tools that can actually parse this data. For that, I'm going to use Pandas, a data analysis library for Python.
This blog post isn't intended to teach you how to use Pandas, but I'll be specific enough that you should be able to follow along with the provided dataset yourself.
Pandas has support for importing Excel spreadsheets by using the xlrd library so let's install both. We'll also fetch sqlite3 which we'll use near the end:
> pip install pandas xlrd sqlite3
Collecting pandas
[...]
Installing collected packages: numpy, pandas, xlrd
Successfully installed numpy-1.18.1 pandas-0.25.3 xlrd-1.2.0
> pip install pandas xlrd sqlite3
Collecting pandas
[...]
Installing collected packages: numpy, pandas, xlrd
Successfully installed numpy-1.18.1 pandas-0.25.3 xlrd-1.2.0
Time to import our Excel spreadsheet into a Pandas dataframe but there's a bit of a catch first:
> python
Python 3.8.0 (default, Dec 1 2019, 12:43:25)
[Clang 10.0.1 (clang-1001.0.46.4)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import pandas as pd
>>> workbook = pd.ExcelFile('~/Downloads/towing.xlsx')
>>> workbook.sheet_names
['Aug 16', 'Sep 16', 'Oct 16', 'Nov 16', 'Dec 16', 'Jan 17', 'Feb 17', 'Mar 17', 'Apr 17', 'May 17', 'Jun 17', 'Jul 17', 'Aug 17', 'Sep 17', 'Oct 17', 'Nov 17', 'Dec 17', 'Jan 18', 'Feb 18', 'Mar 18', 'Apr 18', 'May 18', 'Jun 18', 'Jul 18', 'Aug 18', 'Sep 18', 'Oct 18', 'Nov 18', 'Dec 18', 'Jan 19', 'Feb 19', 'Mar 19', 'Apr 19', 'May 19', 'Jun 19', 'Jul 19']
> python
Python 3.8.0 (default, Dec 1 2019, 12:43:25)
[Clang 10.0.1 (clang-1001.0.46.4)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import pandas as pd
>>> workbook = pd.ExcelFile('~/Downloads/towing.xlsx')
>>> workbook.sheet_names
['Aug 16', 'Sep 16', 'Oct 16', 'Nov 16', 'Dec 16', 'Jan 17', 'Feb 17', 'Mar 17', 'Apr 17', 'May 17', 'Jun 17', 'Jul 17', 'Aug 17', 'Sep 17', 'Oct 17', 'Nov 17', 'Dec 17', 'Jan 18', 'Feb 18', 'Mar 18', 'Apr 18', 'May 18', 'Jun 18', 'Jul 18', 'Aug 18', 'Sep 18', 'Oct 18', 'Nov 18', 'Dec 18', 'Jan 19', 'Feb 19', 'Mar 19', 'Apr 19', 'May 19', 'Jun 19', 'Jul 19']
Our workbook is not one big sheet but in fact, one sheet per month. For those of you who don't use Excel (ie me), sheets are those tabs at the bottom of the application. Usually you'll just see "Sheet 1" when viewing a blank spreadsheet.
We still need to parse each sheet, one by one, in order to get a complete collection of data. To do so, we'll just iterate over each sheet and append it to an initially empty data frame:
> python
Python 3.8.0 (default, Dec 1 2019, 12:43:25)
[Clang 10.0.1 (clang-1001.0.46.4)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import pandas as pd
>>> workbook = pd.ExcelFile("~/Downloads/towing.xlsx")
>>> df = pd.DataFrame()
>>> for sheet_name in workbook.sheet_names:
... sheet = workbook.parse(sheet_name=sheet_name)
... df = df.append(sheet, sort=False)
...
>>> df
Unnamed: 0 Date and Time ... Unnamed: 9 Unnamed: 10
0 NaN NaN ... NaN NaN
1 NaN Monday, 01 Aug 2016 ... NaN NaN
2 NaN NaN ... NaN NaN
3 NaN 08:34 a.m. ... NaN NaN
4 NaN 10:06 a.m. ... NaN NaN
... ... ... ... ... ...
1754 NaN NaN ... NaN NaN
1755 NaN Tuesday, 23 Jul 2019 ... NaN NaN
1756 NaN NaN ... NaN NaN
1757 NaN 09:05 p.m. ... NaN NaN
1758 NaN NaN ... NaN NaN
[64160 rows x 11 columns]
> python
Python 3.8.0 (default, Dec 1 2019, 12:43:25)
[Clang 10.0.1 (clang-1001.0.46.4)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import pandas as pd
>>> workbook = pd.ExcelFile("~/Downloads/towing.xlsx")
>>> df = pd.DataFrame()
>>> for sheet_name in workbook.sheet_names:
... sheet = workbook.parse(sheet_name=sheet_name)
... df = df.append(sheet, sort=False)
...
>>> df
Unnamed: 0 Date and Time ... Unnamed: 9 Unnamed: 10
0 NaN NaN ... NaN NaN
1 NaN Monday, 01 Aug 2016 ... NaN NaN
2 NaN NaN ... NaN NaN
3 NaN 08:34 a.m. ... NaN NaN
4 NaN 10:06 a.m. ... NaN NaN
... ... ... ... ... ...
1754 NaN NaN ... NaN NaN
1755 NaN Tuesday, 23 Jul 2019 ... NaN NaN
1756 NaN NaN ... NaN NaN
1757 NaN 09:05 p.m. ... NaN NaN
1758 NaN NaN ... NaN NaN
[64160 rows x 11 columns]
There we go, all 64,000 rows in one nice data frame we can reason about!
We've still got a long way to go however as we don't have a nice index, nor do we even have anywhere remotely consistent data.
Cleaning up the data
First, let's have a closer look at our data by printing the first 25 rows:
>>> df[0:25]
Unnamed: 0 Date and Time ... Unnamed: 9 Unnamed: 10
0 NaN NaN ... NaN NaN
1 NaN Monday, 01 Aug 2016 ... NaN NaN
2 NaN NaN ... NaN NaN
3 NaN 08:34 a.m. ... NaN NaN
4 NaN 10:06 a.m. ... NaN NaN
5 NaN 10:42 a.m. ... NaN NaN
6 NaN 11:49 a.m. ... NaN NaN
7 NaN 01:18 p.m. ... NaN NaN
8 NaN 04:09 p.m. ... NaN NaN
9 NaN 04:10 p.m. ... NaN NaN
10 NaN 04:17 p.m. ... NaN NaN
11 NaN 04:21 p.m. ... NaN NaN
12 NaN 04:31 p.m. ... NaN NaN
13 NaN 04:40 p.m. ... NaN NaN
14 NaN 04:44 p.m. ... NaN NaN
15 NaN 04:57 p.m. ... NaN NaN
16 NaN 08:17 p.m. ... NaN NaN
17 NaN NaN ... NaN NaN
18 NaN Tuesday, 02 Aug 2016 ... NaN NaN
19 NaN NaN ... NaN NaN
20 NaN 02:04 a.m. ... NaN NaN
21 NaN 10:50 a.m. ... NaN NaN
22 NaN 11:41 a.m. ... NaN NaN
23 NaN 02:32 p.m. ... NaN NaN
24 NaN 04:13 p.m. ... NaN NaN
[25 rows x 11 columns]
>>> df[0:25]
Unnamed: 0 Date and Time ... Unnamed: 9 Unnamed: 10
0 NaN NaN ... NaN NaN
1 NaN Monday, 01 Aug 2016 ... NaN NaN
2 NaN NaN ... NaN NaN
3 NaN 08:34 a.m. ... NaN NaN
4 NaN 10:06 a.m. ... NaN NaN
5 NaN 10:42 a.m. ... NaN NaN
6 NaN 11:49 a.m. ... NaN NaN
7 NaN 01:18 p.m. ... NaN NaN
8 NaN 04:09 p.m. ... NaN NaN
9 NaN 04:10 p.m. ... NaN NaN
10 NaN 04:17 p.m. ... NaN NaN
11 NaN 04:21 p.m. ... NaN NaN
12 NaN 04:31 p.m. ... NaN NaN
13 NaN 04:40 p.m. ... NaN NaN
14 NaN 04:44 p.m. ... NaN NaN
15 NaN 04:57 p.m. ... NaN NaN
16 NaN 08:17 p.m. ... NaN NaN
17 NaN NaN ... NaN NaN
18 NaN Tuesday, 02 Aug 2016 ... NaN NaN
19 NaN NaN ... NaN NaN
20 NaN 02:04 a.m. ... NaN NaN
21 NaN 10:50 a.m. ... NaN NaN
22 NaN 11:41 a.m. ... NaN NaN
23 NaN 02:32 p.m. ... NaN NaN
24 NaN 04:13 p.m. ... NaN NaN
[25 rows x 11 columns]
Focusing on the date column, there's a pattern that sticks out. The data is actually grouped visually by day like so:
[empty cell]
Monday, 01 Aug 2016
[empty cell]
08:34 a.m.
[...]
08:17 p.m.
[empty cell]
Tuesday, 02 Aug 2016
[empty cell]
02:04 a.m.
[empty cell]
Monday, 01 Aug 2016
[empty cell]
08:34 a.m.
[...]
08:17 p.m.
[empty cell]
Tuesday, 02 Aug 2016
[empty cell]
02:04 a.m.
There's no consistency from a machine readable point of view so we'll have to clean it up into something more consistent manually. Before we do that, let's get some column headings.
> from pprint import pprint
> pprint(list(df.columns))
['Unnamed: 0',
'Date and Time ',
'Vehicle ',
'Towed From ',
'Towed Too ',
'Unnamed: 5',
'Unnamed: 6',
'Unnamed: 7',
'Unnamed: 8',
'Unnamed: 9',
'Unnamed: 10']
> from pprint import pprint
> pprint(list(df.columns))
['Unnamed: 0',
'Date and Time ',
'Vehicle ',
'Towed From ',
'Towed Too ',
'Unnamed: 5',
'Unnamed: 6',
'Unnamed: 7',
'Unnamed: 8',
'Unnamed: 9',
'Unnamed: 10']
That's a lot of columns.
After a quick skim of the dataset, we can see that only Unnamed: 5
is used. We'll discard the
unused columns and then clean up the remaining data:
> df = df.drop(columns=['Unnamed: 0', 'Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10'])
>>> df
Date and Time Vehicle ... Towed Too Unnamed: 5
0 NaN NaN ... NaN NaN
1 Monday, 01 Aug 2016 NaN ... NaN 55
2 NaN NaN ... NaN 55
3 08:34 a.m. TOYOTA FUNCARGO ... 2 PUKEHANA AVE 55
4 10:06 a.m. AUDI A3 ... 30A CROMWELL ST 55
... ... ... ... ... ...
1754 NaN NaN ... Total 1 Romeo
1755 Tuesday, 23 Jul 2019 NaN ... NaN Romeo
1756 NaN NaN ... NaN Romeo
1757 09:05 p.m. TOYOTA, ESTIMA ... 7 FLAVELL DR Romeo
1758 NaN NaN ... Total 1 Romeo
> df = df.drop(columns=['Unnamed: 0', 'Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10'])
>>> df
Date and Time Vehicle ... Towed Too Unnamed: 5
0 NaN NaN ... NaN NaN
1 Monday, 01 Aug 2016 NaN ... NaN 55
2 NaN NaN ... NaN 55
3 08:34 a.m. TOYOTA FUNCARGO ... 2 PUKEHANA AVE 55
4 10:06 a.m. AUDI A3 ... 30A CROMWELL ST 55
... ... ... ... ... ...
1754 NaN NaN ... Total 1 Romeo
1755 Tuesday, 23 Jul 2019 NaN ... NaN Romeo
1756 NaN NaN ... NaN Romeo
1757 09:05 p.m. TOYOTA, ESTIMA ... 7 FLAVELL DR Romeo
1758 NaN NaN ... Total 1 Romeo
It's starting to look more reasonable. Now let's assign some appropriate names. You can't quite tell from the code snippets but there's actually some rogue whitespace in the columns so I opened to rename all of them for consistency:
> df = df.rename(columns={'Unnamed: 5': 'Suburb', 'Date and Time ': 'Date', 'Towed From ': 'Origin', 'Towed Too ': 'Destination', 'Vehicle ': 'Vehicle'})
>>> df
Date Vehicle ... Destination Suburb
0 NaN NaN ... NaN NaN
1 Monday, 01 Aug 2016 NaN ... NaN 55
2 NaN NaN ... NaN 55
3 08:34 a.m. TOYOTA FUNCARGO ... 2 PUKEHANA AVE 55
4 10:06 a.m. AUDI A3 ... 30A CROMWELL ST 55
... ... ... ... ... ...
1754 NaN NaN ... Total 1 Romeo
1755 Tuesday, 23 Jul 2019 NaN ... NaN Romeo
1756 NaN NaN ... NaN Romeo
1757 09:05 p.m. TOYOTA, ESTIMA ... 7 FLAVELL DR Romeo
1758 NaN NaN ... Total 1 Romeo
> df = df.rename(columns={'Unnamed: 5': 'Suburb', 'Date and Time ': 'Date', 'Towed From ': 'Origin', 'Towed Too ': 'Destination', 'Vehicle ': 'Vehicle'})
>>> df
Date Vehicle ... Destination Suburb
0 NaN NaN ... NaN NaN
1 Monday, 01 Aug 2016 NaN ... NaN 55
2 NaN NaN ... NaN 55
3 08:34 a.m. TOYOTA FUNCARGO ... 2 PUKEHANA AVE 55
4 10:06 a.m. AUDI A3 ... 30A CROMWELL ST 55
... ... ... ... ... ...
1754 NaN NaN ... Total 1 Romeo
1755 Tuesday, 23 Jul 2019 NaN ... NaN Romeo
1756 NaN NaN ... NaN Romeo
1757 09:05 p.m. TOYOTA, ESTIMA ... 7 FLAVELL DR Romeo
1758 NaN NaN ... Total 1 Romeo
Even better! We're almost in a position to start parsing our dates into valid timestamps.
Performing some data fixes
Here's the part that was the most difficult, which I've already done for you thankfully.
Basically, I wrote some code to parse the dates into timestamps and it would keep breaking. I'd fix the offending piece of data, run it again and see where it broke next. I'd keep doing that until the script ran to completion.
Here are the following data fixes, provided so you can follow along entirely with my process:
df = df.replace('Sunda, 28 Aug 2016', 'Sunday, 28 Aug 2016')
df = df.replace('Satruday, 06 Jan 2017', 'Saturday, 06 Jan 2017')
df = df.replace('Tuesday, 28th Nov ', 'Tuesday, 28 Nov 2017')
df = df.replace('4.40pm', '4:40pm')
df = df.replace('5.08pm', '5:08pm')
df = df.replace('14:55 pm', '2:55pm')
df = df.replace('4.37 p.m.', '4:37pm')
df = df.replace('17:01 p.m', '5:01pm')
df = df.replace('4.22 p.m.', '4:22pm')
df = df.replace('4.32 p.m.', '4:32pm')
df = df.replace('Sunda, 28 Aug 2016', 'Sunday, 28 Aug 2016')
df = df.replace('Satruday, 06 Jan 2017', 'Saturday, 06 Jan 2017')
df = df.replace('Tuesday, 28th Nov ', 'Tuesday, 28 Nov 2017')
df = df.replace('4.40pm', '4:40pm')
df = df.replace('5.08pm', '5:08pm')
df = df.replace('14:55 pm', '2:55pm')
df = df.replace('4.37 p.m.', '4:37pm')
df = df.replace('17:01 p.m', '5:01pm')
df = df.replace('4.22 p.m.', '4:22pm')
df = df.replace('4.32 p.m.', '4:32pm')
Transforming dates into valid timestamps
Now that our data is in much better shape, we can tackle arguably the part that really got me thinking. It wasn't difficult in a blood, sweat and tears kind of way but was definitely a stretch.
Before I walk you through what I settled for, I'll caveat that there may be more ideal ways of doing this. What I wrote got the job done and that's all I cared about ;)
Since our date column includes pseudo-headings, I realised I can just pass over the whole column once.
If the word day
is in a column (as it would be in every heading), we can use that cell to
determine the date we've gotten up to. Any time below that cell implicitly refers to that date so we can
merge it into the following cells.
Here's a visual example of what I mean:
Before | After |
---|---|
Monday, 01 Aug 2016 | Monday, 01 Aug 2016 |
NaN | NaN |
8:34 a.m. | Monday, 01 Aug 2016 8:34 a.m. |
NaN | NaN |
Tuesday, 23 Jul 2019 | Tuesday, 23 Jul 2019 |
NaN | NaN |
4:00 a.m. | Tuesday, 23 Jul 2019 4:00 a.m. |
9:42 p.m. | Tuesday 23 Jul 2019 9:42 p.m. |
The goal here isn't to get super accurate timestamps just yet, but rather something good enough that is
consistent and therefore parsable. The rest of the mess, such as those NaN
are trivial to get
rid of later.
Anyway, here's the shortest possible version of the code required that I came up with:
>>> current_date = ''
>>> for idx, entry in enumerate(df['Date']):
... item = str(entry)
... if 'day' in item:
... current_date = item
... if 'day' not in item and item != 'nan':
... df.iloc[idx]['Date'] = pd.to_datetime(f'{current_date} {item}')
...
>>> current_date = ''
>>> for idx, entry in enumerate(df['Date']):
... item = str(entry)
... if 'day' in item:
... current_date = item
... if 'day' not in item and item != 'nan':
... df.iloc[idx]['Date'] = pd.to_datetime(f'{current_date} {item}')
...
It'll take a little bit to run, as it has to iterate over every row but it leaves us with something pretty promising:
>>> df
Date Vehicle ... Destination Suburb
0 NaN NaN ... NaN NaN
1 Monday, 01 Aug 2016 NaN ... NaN 55
2 NaN NaN ... NaN 55
3 2016-08-01 08:34:00 TOYOTA FUNCARGO ... 2 PUKEHANA AVE 55
4 2016-08-01 10:06:00 AUDI A3 ... 30A CROMWELL ST 55
... ... ... ... ... ...
1754 NaN NaN ... Total 1 Romeo
1755 Tuesday, 23 Jul 2019 NaN ... NaN Romeo
1756 NaN NaN ... NaN Romeo
1757 2019-07-23 21:05:00 TOYOTA, ESTIMA ... 7 FLAVELL DR Romeo
1758 NaN NaN ... Total 1 Romeo
[64160 rows x 5 columns]
>>> df
Date Vehicle ... Destination Suburb
0 NaN NaN ... NaN NaN
1 Monday, 01 Aug 2016 NaN ... NaN 55
2 NaN NaN ... NaN 55
3 2016-08-01 08:34:00 TOYOTA FUNCARGO ... 2 PUKEHANA AVE 55
4 2016-08-01 10:06:00 AUDI A3 ... 30A CROMWELL ST 55
... ... ... ... ... ...
1754 NaN NaN ... Total 1 Romeo
1755 Tuesday, 23 Jul 2019 NaN ... NaN Romeo
1756 NaN NaN ... NaN Romeo
1757 2019-07-23 21:05:00 TOYOTA, ESTIMA ... 7 FLAVELL DR Romeo
1758 NaN NaN ... Total 1 Romeo
[64160 rows x 5 columns]
Ok, I lied earlier. We use the pd.to_datetime
function earlier to generate entirely valid
timestamps. All that's left is to get rid of those intermediary cells and we should have some fresh data
ready to operate on.
>>> df = df.dropna()
>>> df[0:25]
Date Vehicle ... Destination Suburb
3 2016-08-01 08:34:00 TOYOTA FUNCARGO ... 2 PUKEHANA AVE 55
4 2016-08-01 10:06:00 AUDI A3 ... 30A CROMWELL ST 55
5 2016-08-01 10:42:00 MAZDA DEMIO ... 230 SYMONDS ST 55
6 2016-08-01 11:49:00 TOYOTA VANGUARD ... 230 SYMONDS ST 55
7 2016-08-01 13:18:00 TOYOTA VITZ ... 230 SYMONDS ST 55
8 2016-08-01 16:09:00 NISSAN PATHFINDER ... 230 SYMONDS ST 55
9 2016-08-01 16:10:00 VOLKSWAGEN GOLF ... 230 SYMONDS ST 55
10 2016-08-01 16:17:00 HONDA ACCORD ... 230 SYMONDS ST 55
11 2016-08-01 16:21:00 TOYOTA HIGHLANDER ... 230 SYMONDS ST 55
12 2016-08-01 16:31:00 TOYOTA RAV4 ... 230 SYMONDS ST 55
13 2016-08-01 16:40:00 HONDA FIT ... 230 SYMONDS ST 55
14 2016-08-01 16:44:00 TOYOTA CELICA ... 230 SYMONDS ST 55
15 2016-08-01 16:57:00 HOLDEN COMMODORE ... 230 SYMONDS ST 55
16 2016-08-01 20:17:00 TOYOTA TRUENO ... 230 SYMONDS ST 55
20 2016-08-02 02:04:00 HONDA JAZZ ... 3 KORARI ST 55
21 2016-08-02 10:50:00 TOYOTA CARINA ... HENDON AVE 55
22 2016-08-02 11:41:00 MAZDA DEMIO ... 230 SYMONDS ST 55
23 2016-08-02 14:32:00 TOYOTA COROLLA ... 230 SYMONDS ST 55
24 2016-08-02 16:13:00 NISSAN PULSAR ... 230 SYMONDS ST 55
25 2016-08-02 16:21:00 BMW X3 ... 230 SYMONDS ST 55
26 2016-08-02 16:23:00 VOLKSWAGEN GOLF ... 230 SYMONDS ST 55
27 2016-08-02 16:23:00 CITROEN C3 ... 230 SYMONDS ST 55
28 2016-08-02 16:40:00 VMOTO SCOOTER ... 230 SYMONDS ST 55
29 2016-08-02 16:57:00 SUZUKI SWIFT ... 230 SYMONDS ST 55
30 2016-08-02 18:54:00 NISSAN NAVARA ... 230 SYMONDS ST 55
[25 rows x 5 columns]
>>> df = df.dropna()
>>> df[0:25]
Date Vehicle ... Destination Suburb
3 2016-08-01 08:34:00 TOYOTA FUNCARGO ... 2 PUKEHANA AVE 55
4 2016-08-01 10:06:00 AUDI A3 ... 30A CROMWELL ST 55
5 2016-08-01 10:42:00 MAZDA DEMIO ... 230 SYMONDS ST 55
6 2016-08-01 11:49:00 TOYOTA VANGUARD ... 230 SYMONDS ST 55
7 2016-08-01 13:18:00 TOYOTA VITZ ... 230 SYMONDS ST 55
8 2016-08-01 16:09:00 NISSAN PATHFINDER ... 230 SYMONDS ST 55
9 2016-08-01 16:10:00 VOLKSWAGEN GOLF ... 230 SYMONDS ST 55
10 2016-08-01 16:17:00 HONDA ACCORD ... 230 SYMONDS ST 55
11 2016-08-01 16:21:00 TOYOTA HIGHLANDER ... 230 SYMONDS ST 55
12 2016-08-01 16:31:00 TOYOTA RAV4 ... 230 SYMONDS ST 55
13 2016-08-01 16:40:00 HONDA FIT ... 230 SYMONDS ST 55
14 2016-08-01 16:44:00 TOYOTA CELICA ... 230 SYMONDS ST 55
15 2016-08-01 16:57:00 HOLDEN COMMODORE ... 230 SYMONDS ST 55
16 2016-08-01 20:17:00 TOYOTA TRUENO ... 230 SYMONDS ST 55
20 2016-08-02 02:04:00 HONDA JAZZ ... 3 KORARI ST 55
21 2016-08-02 10:50:00 TOYOTA CARINA ... HENDON AVE 55
22 2016-08-02 11:41:00 MAZDA DEMIO ... 230 SYMONDS ST 55
23 2016-08-02 14:32:00 TOYOTA COROLLA ... 230 SYMONDS ST 55
24 2016-08-02 16:13:00 NISSAN PULSAR ... 230 SYMONDS ST 55
25 2016-08-02 16:21:00 BMW X3 ... 230 SYMONDS ST 55
26 2016-08-02 16:23:00 VOLKSWAGEN GOLF ... 230 SYMONDS ST 55
27 2016-08-02 16:23:00 CITROEN C3 ... 230 SYMONDS ST 55
28 2016-08-02 16:40:00 VMOTO SCOOTER ... 230 SYMONDS ST 55
29 2016-08-02 16:57:00 SUZUKI SWIFT ... 230 SYMONDS ST 55
30 2016-08-02 18:54:00 NISSAN NAVARA ... 230 SYMONDS ST 55
[25 rows x 5 columns]
Looks good to me!
Final cleanup
Oh, one last thing. You'll see all of those numbers under the suburb section that don't appear to mean anything. The correspondence that came with the dataset explains what those represent. Let's quickly convert them into something human readable.
df['Suburb'] = df['Suburb'].replace(55, 'CENTRAL')
df['Suburb'] = df['Suburb'].replace(66, 'NORTHERN')
df['Suburb'] = df['Suburb'].replace(77, 'WESTERN')
df['Suburb'] = df['Suburb'].replace(88, 'SOUTHERN')
df['Suburb'] = df['Suburb'].replace(99, 'CBD')
df['Suburb'] = df['Suburb'].replace('Romeo', 'RURAL')
df['Suburb'] = df['Suburb'].replace(55, 'CENTRAL')
df['Suburb'] = df['Suburb'].replace(66, 'NORTHERN')
df['Suburb'] = df['Suburb'].replace(77, 'WESTERN')
df['Suburb'] = df['Suburb'].replace(88, 'SOUTHERN')
df['Suburb'] = df['Suburb'].replace(99, 'CBD')
df['Suburb'] = df['Suburb'].replace('Romeo', 'RURAL')
Here's the final result after all of our hard work beating the dataset into shape:
>>> df
Date Vehicle ... Destination Suburb
3 2016-08-01 08:34:00 TOYOTA FUNCARGO ... 2 PUKEHANA AVE CENTRAL
4 2016-08-01 10:06:00 AUDI A3 ... 30A CROMWELL ST CENTRAL
5 2016-08-01 10:42:00 MAZDA DEMIO ... 230 SYMONDS ST CENTRAL
6 2016-08-01 11:49:00 TOYOTA VANGUARD ... 230 SYMONDS ST CENTRAL
7 2016-08-01 13:18:00 TOYOTA VITZ ... 230 SYMONDS ST CENTRAL
... ... ... ... ... ...
1744 2019-07-03 12:57:00 HOLDEN COMMODORE ... 18 COWLEY PL RURAL
1745 2019-07-03 13:45:00 SUZUKI SWIFT ... ADAMS DR RURAL
1749 2019-07-12 12:01:00 FIAT PUNTO ... 22 HENDERSON VALLEY R RURAL
1753 2019-07-21 13:00:00 MAZDA MPV ... 61 CROOKS RD RURAL
1757 2019-07-23 21:05:00 TOYOTA, ESTIMA ... 7 FLAVELL DR RURAL
[49174 rows x 5 columns]
>>> df
Date Vehicle ... Destination Suburb
3 2016-08-01 08:34:00 TOYOTA FUNCARGO ... 2 PUKEHANA AVE CENTRAL
4 2016-08-01 10:06:00 AUDI A3 ... 30A CROMWELL ST CENTRAL
5 2016-08-01 10:42:00 MAZDA DEMIO ... 230 SYMONDS ST CENTRAL
6 2016-08-01 11:49:00 TOYOTA VANGUARD ... 230 SYMONDS ST CENTRAL
7 2016-08-01 13:18:00 TOYOTA VITZ ... 230 SYMONDS ST CENTRAL
... ... ... ... ... ...
1744 2019-07-03 12:57:00 HOLDEN COMMODORE ... 18 COWLEY PL RURAL
1745 2019-07-03 13:45:00 SUZUKI SWIFT ... ADAMS DR RURAL
1749 2019-07-12 12:01:00 FIAT PUNTO ... 22 HENDERSON VALLEY R RURAL
1753 2019-07-21 13:00:00 MAZDA MPV ... 61 CROOKS RD RURAL
1757 2019-07-23 21:05:00 TOYOTA, ESTIMA ... 7 FLAVELL DR RURAL
[49174 rows x 5 columns]
While we're nowhere near done just yet, I think this is a good place to cap off this post as moving forward, the dataset will shift out of Pandas as we start to translate towing addresses into tangible GPS coordinates. Once we've got coordinates, we can begin plotting this data on a map.
Personally, I learnt a lot about Pandas by going through this whole ordeal. At first, I thought no way could this data set possibly be cleaned up but with enough head banging, anything is possible!
Exporting the data
Rather than just leave this data sitting in memory, let's export it into a SQLite database so we can play around with it a bit more.
You'll need the sqlite3
python package installed which I recommended installing near the top of
this post.
We also need to set an index or trying to export the dataset will fail. Not quite sure why but presumably it doesn't know what to do with the default index. I haven't looked into it but we'll just set our timestamps as the new index.
Given that a human is entering this data, I highly doubt any of our timestamps clash. That said, it's always a good idea to choose something truly guaranteed to be unique so consider yourself warned :)
>>> df = df.set_index('Date')
>>> df
Vehicle Origin Destination Suburb
Date
2016-08-01 08:34:00 TOYOTA FUNCARGO 33 PAH RD 2 PUKEHANA AVE CENTRAL
2016-08-01 10:06:00 AUDI A3 30 CROMWELL ST 30A CROMWELL ST CENTRAL
2016-08-01 10:42:00 MAZDA DEMIO SULTAN LN 230 SYMONDS ST CENTRAL
2016-08-01 11:49:00 TOYOTA VANGUARD 1 WAIOHUA RD 230 SYMONDS ST CENTRAL
2016-08-01 13:18:00 TOYOTA VITZ CAWLEY ST 230 SYMONDS ST CENTRAL
... ... ... ... ...
2019-07-03 12:57:00 HOLDEN COMMODORE BEVERLEY RD 18 COWLEY PL RURAL
2019-07-03 13:45:00 SUZUKI SWIFT ADAMS DR ADAMS DR RURAL
2019-07-12 12:01:00 FIAT PUNTO 2 BERDINNER RD 22 HENDERSON VALLEY R RURAL
2019-07-21 13:00:00 MAZDA MPV PURIRI RD 61 CROOKS RD RURAL
2019-07-23 21:05:00 TOYOTA, ESTIMA 9 FLAVELL DR 7 FLAVELL DR RURAL
[49174 rows x 4 columns]
>>> df = df.set_index('Date')
>>> df
Vehicle Origin Destination Suburb
Date
2016-08-01 08:34:00 TOYOTA FUNCARGO 33 PAH RD 2 PUKEHANA AVE CENTRAL
2016-08-01 10:06:00 AUDI A3 30 CROMWELL ST 30A CROMWELL ST CENTRAL
2016-08-01 10:42:00 MAZDA DEMIO SULTAN LN 230 SYMONDS ST CENTRAL
2016-08-01 11:49:00 TOYOTA VANGUARD 1 WAIOHUA RD 230 SYMONDS ST CENTRAL
2016-08-01 13:18:00 TOYOTA VITZ CAWLEY ST 230 SYMONDS ST CENTRAL
... ... ... ... ...
2019-07-03 12:57:00 HOLDEN COMMODORE BEVERLEY RD 18 COWLEY PL RURAL
2019-07-03 13:45:00 SUZUKI SWIFT ADAMS DR ADAMS DR RURAL
2019-07-12 12:01:00 FIAT PUNTO 2 BERDINNER RD 22 HENDERSON VALLEY R RURAL
2019-07-21 13:00:00 MAZDA MPV PURIRI RD 61 CROOKS RD RURAL
2019-07-23 21:05:00 TOYOTA, ESTIMA 9 FLAVELL DR 7 FLAVELL DR RURAL
[49174 rows x 4 columns]
Now we're ready to export it:
>>> import sqlite3
>>> with sqlite3.connect('towing.db') as conn:
... df.to_sql('towing', conn)
...
>>> import sqlite3
>>> with sqlite3.connect('towing.db') as conn:
... df.to_sql('towing', conn)
...
You should now have a file called towing.db
sitting in the same directory that you opened your
Python REPL.
You might want to use a GUI tool like DB Browser for SQLite to play around with it. You might notice that we've still got some data that isn't quite right and such is the life of data analysis I suppose. I wouldn't know since I'm just a hobbyist, hahaha.
Let's run a sample query to see the top 5 cars just to cap this post off once and for all:
SELECT vehicle, COUNT(*) AS count
FROM towing
GROUP BY vehicle
ORDER BY count DEST
LIMIT 5
SELECT vehicle, COUNT(*) AS count
FROM towing
GROUP BY vehicle
ORDER BY count DEST
LIMIT 5
We get the following table back:
Vehicle | Count |
---|---|
TOYOTA COROLLA | 2103 |
SUZUKI SWIFT | 1602 |
NISSAN TILDA | 1251 |
VOLKSWAGEN GOLF | 1146 |
HONDA FIT | 1089 |
Very cool. Personally, I'm rubbish at SQL so this should be a fun dataset to experiment with.